Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Li Xu, ${ }^{\text {a,b }}$ Yi-Zhi Li, ${ }^{\text {a }}$ Xue-Tai Chen ${ }^{\text {a }}$ and Xing-Xiang Jia

${ }^{\text {a Coordination Chemistry Institute, State Key }}$ Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\mathbf{b}}$ Information College of Science and Technology, Nanjing Forestry University,
Nanjing 210037, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.038$
$w R$ factor $=0.080$
Data-to-parameter ratio $=13.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[2-oxopyridine N-oxide(1-)- $\kappa^{2} O, O^{\prime}$]palladium(II)

In the title palladium complex, $\left[\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\right]$ or $\left[\mathrm{Pd}(\text { opo })_{2}\right]$ [opo = 2-oxopyridine N -oxide $(1-)$], the Pd atom is in a square-planar environment of two opo ligands in a trans configuration.

Comment

Pyridine N-oxide and its derivatives are a group of interesting ligands since a large number of metal complexes have been reported in the past decades (Landers \& Phillips, 1982; Casellato et al., 1983; Scarrow et al., 1985). However, the chelating derivatives of pyridine N -oxide with donor atoms in the 2-position, such as o-mercaptopyridine N -oxide (Chen et al., 1991; Shi et al., 1997; Lobaba \& Verma, 1999) and 2hydroxypyridine N-oxide (Hopo) (Newbold \& Spring, 1948; Hubbard et al., 1979; Casellato et al., 1983; Scarrow et al., 1985; Farkas et al., 2000), have been scarcely studied. Although some reports have appeared on the synthesis and chacterization of metal complexes with 2-hydroxypyridine N-oxide (Newbold \& Spring, 1948), little work has been carried out on X-ray crystal structure determination (Casellato et al., 1983; Riley et al., 1983; Scarrow et al., 1985). We report here the X-ray crystal structure of $\mathrm{Pd}(\text { opo })_{2}$, (I).

(I)

The molecular structure of (I) is illustrated in Fig. 1. The $\mathrm{Pd}(\text { opo })_{2}$ molecule has a regular square-planar geometry around the central Pd atom coordinated by two opo ligands. Two N-oxide O atoms are in a trans configuration. The whole molecule is nearly planar, with a r.m.s. deviation of 0.02 (1) \AA for atoms $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 4, \mathrm{Pd} 1$. The average $\mathrm{Pd}-\mathrm{O}$ (N -oxide) bond distance in (I) of 1.978 (3) \AA is shorter than that reported for $\mathrm{Pd}(\mathrm{mpo})_{2}(2.043 \AA$; Hmpo $=o$-mercapto pyridine N-oxide; Shi et al., 1997). The average $\mathrm{Pd}-\mathrm{O}(\mathrm{C}=\mathrm{O})$ bond distance of $1.992(3) \AA$ is shorter than those in the tetra-

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Received 15 March 2004 Accepted 18 March 2004 Online 15 May 2004

The extended layer structure of (I) [symmetry codes: (i) $2-x, 1-y,-z$; (ii) $\left.1-x, y-\frac{1}{2}, \frac{1}{2}-z\right]$.
chlorocatechol complex $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{C}_{14} \mathrm{O}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ [average $=$ 2.033 (3) \AA; Pierpont \& Downs, 1975] and close to those reported for $\left[\mathrm{Pd}(\mathrm{PhC}(\mathrm{O}) \mathrm{CC}(\mathrm{O}) \mathrm{Me})_{2}\right](1.98 \AA$; Butler et al., 1998). The weak interactions Pd1 $\cdots \mathrm{N} 1(2-x, 1-y,-z)$ [3.572 (4) \AA] and C8-H8 $\cdots \mathrm{O} 3\left(1-x, y-\frac{1}{2}, \frac{1}{2}-z\right)$ connect neighboring molecules into a two-dimensional network (Fig. 2).

Experimental

To a solution of Hopo ($0.22 \mathrm{~g}, 2.0 \mathrm{mmol}$) and $\mathrm{NaOCH}_{3}(0.11 \mathrm{~g}$, $2.0 \mathrm{mmol})$ in 60 ml of $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{3} \mathrm{CN}(2: 1)$ mixed solvent was added $\mathrm{PdCl}_{2}(0.17 \mathrm{~g}, 1.0 \mathrm{mmol})$ and the mixture was refluxed overnight. After removing the insoluble solids by filtration, the filtrate was left to stand at room temperature for several days to give brown blockshaped crystals of $\mathrm{Pd}(\mathrm{opo})_{2}$ in a yield of 40%. Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$ Pd: C 36.77, H 2.47, N 8.58%; found: C 37.10, H $2.75, \mathrm{~N}$ 8.50%. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3090(w), 1618(m, \mathrm{C}-\mathrm{O}), 1551(s), 1495(s)$, 1438 (w), 1348 (s), 1246 (m), 1166 ($s, \mathrm{~N}-\mathrm{O}$), 1143 (w), 1108 (w), 875 (w), 782 (s), $749(s), 698(w), 643(s), 557(w), 536(w)$.

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\right]$
$M_{r}=326.58$
Monoclinic, $P 2_{1} / c$
$a=6.937$ (2) £
$b=8.674$ (2) \AA
$c=17.491$ (4) \AA
$\beta=94.94$ (1) ${ }^{\circ}$
$V=1048.6$ (5) \AA^{3}
$Z=4$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.664, T_{\text {max }}=0.765$
4617 measured reflections
$D_{x}=2.069 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 789
\quad reflections
$\theta=3.4-23.6^{\circ}$
$\mu=1.77 \mathrm{~mm}^{-1}$
$T=298(2) \mathrm{K}$
Block, brown
$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$

2065 independent reflections
1403 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-10 \rightarrow 10$
$l=-21 \rightarrow 13$

Refinement

Refinement on F^{2}
H-atom parameters constrained

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039
$$

$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.03 P)^{2}\right]$
$w R\left(F^{2}\right)=0.080$
$S=1.05$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
2065 reflections
154 parameters
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.87 \mathrm{e}_{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\text {max }}=0.87 \mathrm{e}^{-1} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.77 \mathrm{e}^{-3}$
Table 1
Selected geometric parameters (\AA).

Pd1-O3	$1.974(3)$	Pd1-O1	$1.982(4)$
Pd1-O2	$1.981(4)$	Pd1-O4	$1.997(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{\text {ii }}$	0.92	2.53	$3.391(7)$	155

Symmetry code: (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.
All H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.86-0.96 \AA$), with $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the parent atom

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and MERCURY (Version 1.2.1; Bruno et al., 2002); software used to prepare material for publication: SHELXTL.

This work was supported by the Analytical Center of Nanjing University.

References

Bruker (2000). SADABS (Version 6.22), SMART (Version 6.22), SAINT (Version 6.22) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Butler, M., Riermeier, T. H., Mägerlein, W., Müller, T. E. \& Scherer, W. (1998). Polyhedron, 17, 1165-1176.
Casellato, U., Vigato, P. A. \& Tamburini, S. (1983). Inorg. Chim. Acta, 69, 7782.

Chen, X. T., Hu, Y. H., Wu, D. X., Weng, L. H. \& Kang, B. S. (1991). Polyhedron, 10, 2651-2657.
Farkas, E., Enyedy, E. A. \& Csóka, H. (2000). J. Inorg. Biochem. 79, 205-211.
Hubbard, D., Eaton, G. R. \& Eaton, S. S. (1979). Inorg. Nucl. Chem. Lett. 15, 255-259.
Landers, A. E. \& Phillips, D. J. (1982). Inorg. Chim. Acta, 59, 41-47.
Lobaba, T. S. \& Verma, R. (1999). Indian J. Chem. Sect. A, 38, 592-598.
Newbold, G. T. \& Spring, F. S. (1948). J. Chem. Soc. pp. 1864-1866.
Pierpont, C. G. \& Downs, H. H. (1975). Inorg. Chem. 14, 343-347.
Riley, P. E., Abu-Dari, K. \& Raymond, N. (1983). Inorg. Chem. 22, 3940-3944.
Scarrow, R. C., Riley, P. E., Abu-Dari, K., White, D. \& Raymond, K. N. (1985). Inorg. Chem. 24, 954-967.
Shi, J. C., Weng, T. B., Zheng, Y., Zhong, S. J., Wu, D. X., Liu, Q. T., Kang, B. S., Wu, B. M. \& Mak, T. C. W. (1997). Polyhedron, 16, 369-375.

